···
Log in / Register

What does the 'w' in motor oil specifications mean?

4 Answers
DiNolan
07/23/25 7:27pm
The 'w' in motor oil specifications stands for 'winter', indicating that the oil can be used normally during winter if it contains 'w' in its specification. Motor oil, also known as engine lubricating oil, serves to lubricate and reduce friction in the engine, assist in cooling, seal against leaks, prevent rust and corrosion, and provide shock absorption. Motor oil consists of two parts: base oil and additives. The base oil is the main component of lubricating oil, determining its basic properties, while additives compensate for and improve the shortcomings of the base oil, imparting certain new properties, making them an important component of lubricating oil.
Was this review help?
4
0
Share
OChase
08/10/25 3:01pm
The 'W' stands for 'winter', indicating the oil's low-temperature fluidity in its viscosity rating. For example, in the 5W-30 grade, the '5W' means the oil can remain fluid at -30°C—the lower this number, the better the low-temperature performance. The '30' represents the high-temperature viscosity; a higher number means stronger high-temperature protection. Folks in Northeast China should opt for oils starting with '0W', like 0W-20, which flows smoothly even at -35°C, ensuring smooth cold starts without engine dry grinding. Those in the south can use 5W, but remember—don’t just focus on the numbers before and after the hyphen; always follow the maintenance manual. Using excessively high-viscosity oil can actually increase fuel consumption.
Was this review help?
2
0
Share
Expand All
DeStephen
09/23/25 2:09am
After ten years of repairing cars, I've found that many car owners don't understand the secrets behind motor oil viscosity ratings. The number before the W indicates the oil's cold-weather performance - for example, 0W oil can flow at -35°C while 5W withstands -30°C. This number directly affects engine protection during cold starts. Once during a customer inspection, I found his car using 15W oil. After sitting overnight at -25°C in Harbin, the oil was thick as honey in the morning - the oil pump couldn't even circulate it. Switching to 0W-30 solved the problem immediately. Nowadays, new cars mostly use low-viscosity oils like 20-weight grades, which improve fuel efficiency and provide faster lubrication to precision components.
Was this review help?
1
5
Share
Expand All
LouisMarie
11/06/25 4:25am
The mysterious codes on engine oil containers are actually quite simple. Take 5W-40 as an example: the W acts like a separator, with the left number indicating cold weather performance and the right number representing high-temperature viscosity. When choosing oil, first look at the number before W - this determines cold-start capability. Northern regions should use 0W or 5W, while 10W suffices for southern areas. The high-temperature number must match your manual - German cars often require 40 viscosity to protect turbos, while newer Japanese models typically use 20 viscosity for fuel efficiency. Never blindly believe 'higher viscosity means better protection' - using the wrong viscosity actually accelerates engine wear.
Was this review help?
20
1
Share
Expand All
More Forum Discussions

What are the symbols for China's emission standards?

China's vehicle emission standards are denoted as China I, China II, China III, China IV, China V, and China VI. The purpose of these emission standards is to implement environmental protection laws, reduce and prevent vehicle exhaust pollution, protect the ecological environment, and ensure human health. Below is a detailed introduction to China's vehicle emission standards: China I Emission Standard: In the early 1980s, China issued a series of motor vehicle exhaust pollution control emission standards, including the "Idle Emission Standard for Gasoline Vehicles," "Free Acceleration Smoke Emission Standard for Diesel Vehicles," "Full-Load Smoke Emission Standard for Automotive Diesel Engines," and their measurement standards. This marked the gradual establishment of China's vehicle emission standards. The China I standard was fully implemented nationwide on July 1, 2001. China II Emission Standard: By this stage, China had developed a relatively complete vehicle exhaust emission standard and testing system. Beijing was the first to implement the China II emission standard. The requirements for various pollutant emissions were further tightened, and the standard was implemented nationwide by July 1, 2004. China III Emission Standard: On December 30, 2005, Beijing began implementing the China III emission standard. It was also during this time that OBD devices started to be widely used. The specific implementation dates were: July 1, 2009, for light-duty diesel vehicles; July 1, 2010, for heavy-duty gasoline vehicles; July 1, 2008, for heavy-duty gas vehicles; and July 1, 2008, for heavy-duty diesel vehicles. China IV Emission Standard: On January 1, 2008, China IV fuel was introduced in Beijing, followed by the implementation of the China IV standard in multiple cities such as Beijing, Shanghai, and Guangzhou. The nationwide implementation dates were: July 1, 2013, for light-duty diesel vehicles; July 1, 2013, for heavy-duty gasoline vehicles; January 1, 2011, for heavy-duty gas vehicles; and July 1, 2013, for heavy-duty diesel vehicles. China V Emission Standard: The China V emission standard was fully implemented nationwide on July 1, 2017. Compared to China IV, it reduced nitrogen oxide emissions by 25% and introduced stricter PM emission limits. China VI Emission Standard: The "China VI" standard is an upgrade of the China V standard. Compared to "China V," "China VI" imposes stricter limits on pollutant emissions, making it one of the most stringent standards globally. Specifically, "China VI" reduces carbon monoxide emissions from gasoline vehicles by 50%, total hydrocarbon and non-methane hydrocarbon emission limits by 50%, and tightens nitrogen oxide emission limits by 42%.
14
4
Share

What is the fuel tank capacity of the 2019 Sportage?

The fuel tank capacity of the 2019 Sportage is 58L. This data is officially released, and owners of the 2019 Sportage can also check it on the vehicle's configuration sheet. The 2019 Sportage comes in two variants with different engine displacements. The model equipped with a 1.4T engine uses 92-octane fuel, has an NEDC combined fuel consumption of 6.3L/100km, and can travel up to 920km on a full tank. The model equipped with a 2.0L naturally aspirated engine also uses 92-octane fuel, has an NEDC combined fuel consumption of 6.9L/100km, and can travel up to 840km on a full tank. During daily driving, it is essential to monitor the remaining fuel level in the tank. This is usually done by observing the fuel gauge inside the vehicle. If there are no other issues, the fuel level will be accurately reflected on the gauge. The fuel gauge typically has 5 to 6 segments, and it is advisable to refuel when only 2 segments remain to avoid running out of fuel mid-journey. During actual refueling, the amount of fuel may exceed the marked capacity. This is because the fuel tank capacity specified by the manufacturer is measured from the bottom of the tank to the safe fill level. There is additional space from the safe fill level to the tank opening, which is designed to accommodate fuel expansion due to temperature increases without causing overflow. If fuel is filled up to the tank opening during refueling, the actual amount of fuel added may exceed the marked capacity. In addition, the following factors can affect a vehicle's fuel consumption: Vehicle weight: There is a direct correlation between vehicle weight and fuel consumption. A 10% reduction in weight can lead to a corresponding reduction in fuel consumption. Vehicle aerodynamics: A lower drag coefficient results in significantly reduced fuel consumption, while a higher drag coefficient increases fuel consumption proportionally. Tire pressure: Low tire pressure increases friction and adhesion, leading to higher fuel consumption. Driving habits: Aggressive acceleration, frequent braking, and rapid starts can significantly increase fuel consumption. Wind direction: Driving with a tailwind reduces fuel consumption, while driving against a headwind increases engine workload and fuel consumption. Road conditions: Driving on flat roads results in lower fuel consumption, while driving on uneven or steep roads increases fuel consumption. Use of additional electronic devices: Operating extra equipment like the air conditioning while driving increases fuel consumption.
5
5
Share

What is the slope of an accessible ramp?

Accessible ramp designs generally must not exceed a slope of 1:12, with a maximum height of 750mm and a maximum horizontal length of 9000mm per segment. Below are the design specifications for accessible ramps: 1. Straight ramp: ramp width not less than 1200, slope not exceeding 1:12; 2. Switchback double ramp: ramp width 1200, slope 1:12, ramp start and end points and rest platform depth 1500; 3. L-shaped ramp: ramp width 1200, slope less than 1:12, ramp start and end points and rest platform depth 1500.
13
3
Share

What is the starting current of a car in amperes?

During startup, the maximum current can exceed 300 amps, and if the engine has more cylinders, the current will be even higher. Engines with more cylinders are equipped with higher-power starters; otherwise, the engine cannot start smoothly. Battery in the starting system: The car's starting system also includes the battery, which provides energy to the starter. Without the battery, the starter cannot operate. The battery is a very important component and is also a wear part that needs to be replaced regularly. As the number of charge and discharge cycles increases, the battery's storage capacity will decrease, so car owners need to replace their car's battery periodically.
12
3
Share

What is BAIC BluePark?

BAIC BluePark is engaged in the research, development, production, sales, and service of pure electric new energy passenger vehicles and core components. The following is relevant information about new energy vehicles: 1. Battery lifespan: Most manufacturers provide data indicating that the battery can endure 1500-2000 charge-discharge cycles. If charged once daily, that amounts to 365 cycles per year, suggesting the battery can last 3-6 years based on charge-discharge cycles. 2. Recommendation: Avoid overcharging the battery. Regarding batteries, not fully charging them—meaning frequently charging them to full capacity—can affect their lifespan. For pure electric vehicles, it is advisable to avoid deep discharging the battery pack.
11
2
Share

What type of lubricating oil is used for hydraulic retarders?

Hydraulic retarders use specialized hydraulic transmission fluid, also known as Automatic Transmission Fluid (ATF) or automatic transmission oil. This fluid serves as the working medium in vehicle automatic transmissions composed of torque converters, hydraulic couplings, and mechanical gearboxes, utilizing the kinetic energy of the liquid to transfer energy. More details about hydraulic transmission fluid are as follows: 1. Definition: Hydraulic transmission fluid is essentially a high-quality hydraulic oil with higher viscosity index, thermal-oxidative stability, anti-wear properties, and superior cleanliness. 2. Characteristics: It features appropriate viscosity and excellent viscosity-temperature performance, good anti-wear properties, relatively high thermal stability and oxidation resistance, good low-temperature fluidity, and effective anti-foaming properties.
11
1
Share
Cookie
Cookie Settings
© 2025 Servanan International Pte. Ltd.